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Moment analysis of the NQR spectrum of indium metal is used to measure its isotropic and

anisotropic dipolar interactions.
x10"% and 1.55x10"% ergcm?, respectively.

The coupling coefficients A and B are measured to be 2.46
The measurement of the NQR in In-Sn alloys

is described and found to be in qualitative agreement with earlier NMR results.

I. INTRODUCTION

The dipolar interaction between conduction elec-
trons and atomic nuclei provides valuable means
for experimental verification of theories concern-

ing conduction electrons. Knight shifts have been
the subject of much investigation in this regard.!
Evaluation of the Knight-shift parameters from the
observed data is most easily achieved for systems
with cubic crystal structure, or with nuclear spin



leo

=1 species, owing to the absence of quadrupolar
perturbations. In systems where the nuclear quad-
rupole interaction exists, there is the alternative
of working in the quadrupolar regime where the
dipolar perturbations vanish in first order, and the
second-order perturbations dominate the observed
line shape. The latter perturbations consist of
three parts: the direct dipolar interaction between
nuclei and the contact (isotropic) and classical
(anisotropic) dipolar interactions between conduc-
tion electrons and nuclei. These interactions shift
the NQR lines and contribute symmetric and asym-
metric broadening.

The second-order interaction between nuclear
and conduction-electron dipole moments can be
transformed, with certain restrictions, to an in-
direct interaction between nuclei®® which has the
form of a first-order interaction. It includes terms
corresponding to exchange and classical dipolar
interactions, the strengths of which are indicated
by coupling coefficients A and B. These coefficients
are determined by the original dipole interaction
between nuclei and conduction electrons.

Abragam and Kambe* developed the correlation
between the direct dipolar interaction and the NQR
line shape for a nuclear-spin-3 system using the
Van Vleck moment analysis technique.® Bloember-
gen and Rowland® incorporated the indirect classi-
cal dipolar coupling 1§ in an analysis in the NMR
regime for the spin-3 system. The present inves-
tigation extends these analyses to include the direct
interaction as well as the indirect exchange and
classical dipolar interactions for a spin-§ system
in the NQR regime. These results are correlated
with measured data for indium to evaluate the co-
efficients A and B.

II. MOMENT ANALYSIS IN THE QUADRUPOLAR
REGIME FOR SPIN-3 NUCLEI

The second-order hyperfine interaction is de-
scribed formally by the many-body Hamiltonian

87 - - -
H'=2("§— Meje #nja(-fij)'*‘iﬂ;s‘_m
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where [i,; and U ,; are conduction-electron and
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nuclear-dipole moments, and T, is the radius vec-
tor between them. First-order perturbation theory
applied to Eq. (1) produces the isotropic and an-
isotropic Knight shifts, as mentioned above. Sec-
ond-order perturbation theory applied to Eq. (1)
reduces to indirect interactions between nuclei,
where conduction electrons are polarized by nu-
clear moments which themselves react to the polar-
ized electrons. The Hamiltonian for this inter-
action among nuclei is

=AY R{I, 1,.+B E R},
i1

[T, 1,0 - 8R;3(T,+ Ry )L+ Ryy)], (2

where f, , f,' are the spin operators for nuclei j
and j’, and Ry;. is the radius vector between them.
The first and second moments of the NQR line
are related to traces of the perturbing Hamiltonian
in the manner described in Refs. 5 and 6. It is to

be emphasized that whereas the shift in first mo-
ment vanishes in the NMR regime, it is finite in

the NQR regime. The resulting m dependence of
the first- and second-moment expressions is given
in Table I. Note in particular that the first-mo-
ment shift relative to the quadrupolar frequency
has the same m dependence as the pure quadrupolar
frequency itself, 3(2m +1)y,,

n(bwy=~(2m+1)[1.444+0.74(B+B)], (3)

where B ='y""h’2 is the coupling coefficient for the
direct dipolar interaction between nuclei. There-
fore, the first moment (w) also has the m depen-
dence, i.e.,

(w)=3(2m +1)(2mv, +(Aw),,5) . @)

Consequently, empirical determination of (w) does
not resolve directly the quadrupolar frequency and
first-moment shift. However, independent deter-
mination of v, can be provided by NMR. Since
there is no first-moment shift due to spin-spin in-
teractions in the magnetic regime, the quadrupolar
frequency resulting from the analysis of NMR is
an unperturbed frequency The indium v, thus de-
termined by Anderson’ is v,=1.891 MHz. For the
moment expressions used in the calculations, con-
sult Table I.

TABLE I. Moment expressions.,
m —7{Aw)x10~2 (73 Awd +E2{Aw)?) x107%8
3 2. 44A +1, 48(B+B) 0.634A2 -0, 00562A(B+B)+ 0.0654(B + B)
3 4, 88A+2 96(B+B) 0.50542~0, 00384A(B+B)+0 0695(B + B)?
s 7.324+4,44(B+B) 0.335A42~0.001424(B + B) +0.0638(B+ B)?
< 9.76A+5.92(B+B) 0.13842+ 0,000784A(B + B) +0.0578(B + B)?
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III. ZEEMAN BROADENING OF NQR FOR
SPIN- NUCLEI

Application of a small static magnetic field per-
pendicular to the rf coil of an NQR sample splits
the m degeneracy of the zero-order levels, which
produces broadening in addition to that produced by
internal sources. This Zeeman broadening is the
basis for the modulated signal received by the
phase-sensitive detector of the nuclear resonance
spectrometer. The recorded output of the spectrom-
eter is the difference between Zeeman-broadened
and the normal NQR lines, where the latter is
needed to compare with the moment expressions
of Sec. II. In order to obtain the unbroadened line
shape, it was necessary to describe the broadened
line shape to subtract from the measured shape.

The Zeeman-broadened NQR distribution is
represented analytically by the integral

Z(v):fow Fzv-v")I")dv', (5)

where I(v) is the zero-field NQR distribution, and
F,(v-v')is the Zeeman broadening function which
represents the distribution originating from the
zero-field resonance at v’. Then, given the Zee-
man broadening function, the pure-NQR line shape
can be recovered from the integral equation

Imeas) =Iw) = [" Fz(v =v") 10" ) v’ . (6)

where I, ,(v) is the measured line shape. The
solution can be obtained numerically by applying
finite limits to the integral, outside of which I(v)
is assumed to vanish, writing the integral in ma-
trix notation, and inverting.

The Zeeman broadening function F,(v—p’) is
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FIG. 1. Zeeman broadening functions for spin-+

nuclei in an external field of 112 G.
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FIG. 2. Schematic diagram of the spectrometer
showing the FET calibrator that was developed for the
NQR intensity measurements.

derived from a powder pattern analysis since the
splitting of degenerate levels by a static magnetic
field depends on the relative orientation of the
magnetic field and the principle axis of a given
crystal. This analysis is given in Ref. 6. The
resultant functions are only piecewise analytic
and are shown graphically for spin-3 nuclei in a
field of 112 G in Fig. 1. Prior to application in
the solution for I(y), the broadening function cor-
responding to the transition of interest must be
normalized according to

f,: Imeas(V"'V’)d(V-V’)zl , (7)

whereby the integral of Eq. (6) over all frequencies
vanishes identically.

IV. EXPERIMENTAL METHOD

All reported measurements were made at 4.2 °K
with a nuclear resonance spectrometer employing
a marginal oscillator similar to the Pound-Knight
oscillator.® Radio-frequency power absorbed by
the sample is amplitude modulated by a 50-Hz
square-wave magnetic field applied to the sample.
Detection of the modulated signal produces an audio
voltage proportional to the difference in resonance
absorption with the field on and off. The resulting
audio signal is transmitted to a lock-in amplifier
and phase-sensitive detector from which the output
level is recorded as the rf frequency is swept
slowly through the resonance. A single sweep re-
quired about three hours in order to produce ab-
sorption curves with negligible phase lag via the
10-sec time constant of the phase-sensitive de-
tector.

Since the spectrometer sensitivity varies over
the required sweep ranges, a calibrator was in-
stalled in the tank circuit of the marginal oscillator.
It consists of a 1-M® resistor in series with a
field-effect transistor (FET), which is shunted by
a 5-Q resistor as shown in Fig. 2. During cal-
ibration, a 10-V bidirectional square wave switches
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FIG. 3. Demodulation of the measured data.

the FET at the characteristic frequency of the
spectrometer producing a conductance modulation
of the tank circuit in analogy to that produced by
the sample during resonance. The conductance
modulation produced by the calibrator is itself
frequency dependent and was calibrated by mea-
suring proton magnetic resonances over the re-
quired frequency range.

V. RESULTS

Nuclear quadrupole resonances were recorded

1/2-3/2 TRANSITION

2,2

3/2-5/2 TRANSITION

5/2-7/2 TRANSITION

6.3

7/2-9/2 TRANSITION

7.

FIG. 4. As-recorded pure indium NQR. Frequencies
are in MHZ.
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FIG. 5. Pure-NQR curves for pure indium, refer-
enced to frequency of peak intensity. The widths in-
crease with m values.

for 325-mesh, 99.999% indium powder. As-re-
corded data for the four transitions are shown in
Fig. 3. The observed base line drift is ascribed
to magnetoresistance where additional rf power

is absorbed by conduction electrons. In order to
obtain the pure '*In NQR, the following operations
were performed: (a) The as-recorded trace was
corrected according to the sensitivity calibration
of the spectrometer; (b) a smooth base line was
interpolated from either side of the resonance; (c)
the pure-NQR curve was separated from the Zee-
man-broadened resonance (an example of the Zee-
man demodulation is shown in Fig. 4); and (d) the

3306 kHz

FIG. 6. NQR of nitrogen in hexamethylene-tetramine.
Frequency increases to the right.
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TABLE II. Line-shape parameters for pure indium NQR.

Linewidth
Transition {v) (FWHM)? (v)-2@2m+1) x1891 (= )% Vpeak
(m—m+1) (kHz) (kHz) (kHz) (kHz)? (kHz)
3-3 1872 47 -19 521 1883
2.5 3756 49 —26 956 3764
-+ 5635 53 -39 1248 5652
- 7522 51 —42 1096 7537

AFWHM = full width at half-maximum.

8m and °In resonances were separated. The
latter separation was achieved by considering the
minor, ®In, resonance to be shifted down in fre-
quency by the ratio of the quadrupole moments and
by assuming similar line shapes with intensities in
the ratio of natural abundances.

The reduced *5In NQR curves are shown in Fig.
5. They have been normalized with respect to ab-
sorption intensity and superimposed with respect
to frequency of peak intensity. The $-3, &-%, and
T-% curves are almost identical in shape. The
1-2 transition is significantly lower in intensity in
the tail regions. The uniqueness of the latter line
shape corresponds to the distinction of that tran-
sition in the quantum-mechanical analysis as dis-
cussed in Ref. 6.

The asymmetries of the resonances in Fig. 5 are
similar to the asymmetry of the nitrogen NQR in
hexamethylene-tetramine (HMT) shown in Fig. 6.
The latter is shown for comparison since this nar-
row as-recorded curve is essentially the pure-
NQR curve. This is because the HMT resonance
is so narrow thatthe Zeeman-broadened portion is

A 10%erg cmd
4 o

(B+B)10%8erg cm?

-3

FIG. 7. Simultaneous solution of Eqs. (8) and (9)
for the spin-spin coupling coefficients.

spread into the noise level, and no calibration is
required. The low-frequency sides of the reso-
nances have more gradual slopes and show the signs
of structure similar to that reported by Scott® for
solid nitrogen. This is also consistent with the
negative shift in first moment due to the spin-spin
perturbations discussed above.

Moments and other parameters for the indium
NQR curves in Fig. 5 are listed in Table II. The
first moments should have the proportionality
1:2:3:4, since the spin-spin perturbations do not
affect that proportionality. The weighted mean of
the first moments, i.e., the sum of the four first
moments divided by 10, is (#)=1878 kHz. The -2
and 3-% transitions have first moments in precise
proportion to this mean, whereas the first moment
of the -3 transition is 6 kHz lower than (7), and
that of the I -3 transition is 10 kHz higher than
«v).

When the experimental moments for pure indium
are used in the expressions for the spin-spin coef-
ficients in Table I, the mean first-moment shift
yields the linear relation

A+0.607(B+B)=3.51x10"* ergcm® ®)

and the second moment for the $-% transition yields

the quadratic relation
A2-0.00888A(B + B)+0.103(B + B)?

=6.04x10% erg?em®. (9)
Simultaneous solution of Eqs. (8) and (9), plotted

3850 kHz

3550 kHz

FIG. 8. As-recorded NQR for 99.4% In-0.6% Sn,
2 -2 transition.
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in Fig. 7, yields

A=2,40%x10"® and B=1.55x10" (10

or

A=-0.87x10"* and B=6.85x10"%, (11)

The present analysis does not specify the correct
pair of solutions. This ambiguity is similar to that
encountered by Bloembergen and Rowland® in their
analysis of thallium in the magnetic regime. As
they point out, however, the relative strengths of
the pseudo-exchange-coupling and the classical
dipolar coupling increases from a ratio of 0.01 in
the light elements such as the HD molecule to a

3681

ratio of 10 to 20 in the heavier metallic elements
such as thallium. On this basis, the values
A=2.40x10"¢ and B=1.55x10% ergcm?® are favored
for indium. This results in A/B=6.8.

The NQR for dilute alloys of tin in indium have
also been measured. The problem of very broad
alloy resonances precluded accurate reduction of
the measured data since the Zeeman-modulated
distribution exceeded the maximum scan width of
the spectrometer (for a given marginal oscillator
setting). However, the gross asymmetry of the
alloy resonances was apparent from the as-recorded
data, as seen in Fig. 8, and is in qualitative agree-
ment with the results predicted by Thatcher!® from
his NMR data.
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This paper presents a simple reformulation of the expression for the density effect correc-
tion 8, i.e., the reduction in the ionization loss of fast charged particles due to the dielectric
polarization of the medium. The general expression for 6 thus obtained is applicable to both
condensed materials and gases. Its accuracy is such that the resulting values of the ionization
loss dE/dx are expected to have a maximum error of less than 2% throughout the range of mo-

menta where the density effect is important.

I. INTRODUCTION

The density effect correction for the ionization
loss of charged particles at high energies!™" has
been previously evaluated for a large number of
substances. *”7 With the advent of the high-energy
accelerators in the past decade, the need has
arisen for the calculation of the density effect in
a variety of additional materials (with various
compositions and densities), which were not in-
cluded in the previous work (Refs. 4-7). In these
references, an appropriate dispersion oscillator
model was constructed for each new material, and
the resulting values of the density effect correc-

tion 6 as a function of momentum p were then fitted
with a four-parameter formula which was first in-
troduced by Sternheimer in 1952. In this formula,
6 is actually expressed as a function of X, defined
by X =log,o(p/moc), where m, is the mass of the
incident charged particle.

It was recently suggested by Berger® that in view
of the growing demand for data on 6(X) for new
materials, it would be of interest to obtain a gen-
eral expression for 5(X), which would not require
a detailed fitting procedure for each substance, if
this is possible. After trying several possible
fits, we have found such a general expression for
the density effect correction 6(X). The expression



